
-*~VNPWI IdlOe -44~*

AD-A286 057

Inference and Estimation of
a Long-Range Trigram. Model

S. Della Pietrao V. Della Pietra* J. Gillett"

J. Laffertyt H. Printz' L. Urego

September, 1994

CMU-CS-94- 188

94~o ' 805

~ >,

Inference and Estimation of
a Long-Range Trigram Model

S. Della Pietra* V. Della Pietra* J. Gillett*
J. Laffertyt H. Printz* L. Ure§*

September, 1994

CMU-CS-94-188

tSchool of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

*IBM Thomas J. Watson Research Center 9 , ,94
P.O. Box 704

Yorktown Heights, NY 10598

To appear in proceedings of the Second International Colloquium on Grammatical
Inference, Alicante, Spain, September, 1994.

Research supported in part by NSF and ARPA under grants IRI-9314969, N00014-92-C-0189

and N00014-91-C-0135

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the NSF
or the U.S government.

f, 0('434794
\...K•V. ISIO Np"A C-

Keywords: Natural language processing, formal languages

Abstract

We describe an implementation of a simple probabilistic link grammar. This probabilistic
language model extends trigrams by allowing a word to be predicted not only from the
two immediately preceeding words, but potentially from any preceeding pair of adjacent
words that lie within the same sentence. In this way, the trigram model can skip over less
informative words to make its predictions. The underlying "grammar" is nothing more
than a list of pairs of words that can be linked together with one or more intervening
words; this word-pair grammar is automatically inferred from a corpus of training text.
We present a novel technique for indexing the model parameters that allows us to avoid
all sorting in the M-step of the training algorithm. This results in significant savings in
computation time, and is applicable to the training of a general probabilistic link grammar.
Results of preliminary experiments carried out for this class of models are presented.

/*ccesion For
NTIS CRA&I

rTIC TAB
J';arnounced 0l

__: -- -------
111 D t. ib.!tion I

•vUabil~y Codes

Avail arid / or

Special

17-I

1 Introduction

The most widely used statistical model of language is the so-called trigram model. In this
simple model, a word is predicted based solely upon the two words which immediately
precede it. The simplicity of the trigram model is simultaneously its greatest strength
and weakness. Its strength comes from the fact that one can easily estimate trigram
statistics by counting over hundreds of millions of words of data. Since implementation
of the model involves only table lookup, it is computationally efficient, and can be used
in real-time systems. Yet the trigram model captures the statistical relations between
words by the sheer force of numbers. It ignores the rich syntactic and semantic structure
which constrains natural languages, allowing them to be easily processed and understood
by humans.

Probabilistic link grammar has been proposed as an approach which preserves the
strengths and computational advantages of trigrams, while incorporating long-range de-
pendencies and more complex information into a statistical model [LST92]. In this paper
we describe an implementation of a very simple probabilistic link grammar. This prob-
abilistic model extends trigrams by allowing a word to be predicted not only from the
two immediately preceding words, but potentially from any preceding pair of adjacent
words that lie within the same sentence. In this way, the trigram model can skip over less
informative words to make its predictions. The underlying "grammar" is nothing more
than a list of pairs of words that can be linked together with one or more intervening
words between them. This paper presents an outline of the basic ideas and methods used
in building this model.

Section 2 gives an introduction to the long-range trigram model and explains how it can
be seen as a probabilistic link grammar. The word-pair grammar is automatically inferred
from a corpus of training text. While mutual information can be used as a heuristic to
determine which words might be profitably linked together, this measure alone is not
adequate. In Section 3 we present a technique that extends mutual information to suit
our needs. The parameter estimation algorithms, which derive from the EM algorithm.
are presented in Sections 4 and 5. In particular, we present a novel technique for indexing
the model parameters that allows us to avoid all sorting in the M-step of the training
algorithm. This results in significant savings in computation time, and is applicable to
the training of a general probabilistic link grammar. In Section 6 we present the results
of preliminary experiments carried out using this approach.

2 A Long-Range Trigram Model

As a motivating example, consider the picture'shown below. This diagram represents
a linkage of the underlying sentence "Either a rioja ... suckling pig". as described in
[ST91]. The important characteristics of a linkage are that the arcs, or links, connecting
the various words do not cross, that there is no more than one link between any pair of
words, and that the resulting graph is connected. Viewed probabilistically, we imagine
that each word is generated from the bigram ending with the word that it is linked to
on the left. Thus, the first right parenthesis is generated from the bigram (rioja, "(")
while the word "suckling" is generated from the bigram (roast, young). The word "or"
is generated from the bigram (1, Either), where 1 is a boundary word. Another valid

.

linkage would connect the first left parenthesis with the last right parenthesis, but this
would preclude a connection between the words "Either" and "or" since the resulting
links would cross.

Either a rioja (La Rioja Alta '85) or a burgundy (La Tache '83

goes with Botin's roast young suckling pig

To describe the model in more detail, consider the following description of standard
trigrams. This model is viewed as a simple finite-state machine for generating sentences.
The states in the machine are indexed by pairs of words. Adjoining the boundary word
_L to our vocabulary, we suppose that the machine begins in the state (1, 1). When
the machine is in any given state (w1 ,w2) it progresses to state (w 2, w3) with probability
T (w 3 1 wl w2) and halts with probability T (I I w, w2), thus ending the sentence.

Our extended trigram model can be described in a similar fashion. Again states are
indexed by pairs of words, but a state s = (w, w2) can now either halt, step, or branch,
with probability D (HALT I s), D (STEP I s), and D (BRANCH I s) respectively. In case either
a STEP or a BRANCH is chosen, the next word w is generated with the trigram probability
T (w I wl W2). But in the case that BRANCH was chosen for the state s, an additional word
w' is generated from the long-range trigram distribution L (w' I w1 w2).

For example, in generating the above linkage, the state indexed by s = (or, a) chooses
to step, with probability D (STEP Is), and the word "burgundy" is then generated with
probability T (burgundy I or a). On the other hand, the state s = (1, Either) branches,
with probability D (BRANCH Is), and from this state the words "a" and word "or" are
then generated with probabilities T (a I I Either) and L (or I I_ Either) respectively.

This results in linkages, such as the one shown above, where every word is linked to
exactly one word to its left, and to zero, one, or two words on its right. If we number
the words in the sentence S from 1 to ISI, then it is convenient to denote by ,1i the index
of the word which generates the i-th word of the sentence. That is, word i is linked to
word -ai on its left. For instance, in the linkage shown above we see that 1•8 = 7, 1i9 = 4,
and 410 = 1. This notation allows us to write down the probability of a sentence as
P(S) = E•CA(S) P(S, A), where £(S) is the set of all linkages of S, and where the joint
probability P(S, A) of a sentence and a linkage is given by

IS,
P(S, A) rI D (d I wi, wi-I) T (w, I wi-I w-)I6(-i L (w1 I w 4i)ai- I-i-,

imt (1)

Here di E {HALT, STEP, BRANCH}, b(i,j) is equal to one if i = j and is equal to zero
otherwise, and the indices -i are understood to be taken with respect to linkage A. The
indices eii determine which words are linked together, and so completely determine a
valid linkage as long as they satisfy the no-crossing condition 4•j < ai whenever i < j. In
particular, specifying the indices 4i determines the values of di, since di is equal to HALT,
STEP, or BRANCH when Ej>,i 6(i,<j) is equal to zero, one, or two, respectively.

A full description of the model is best given in terms of a probabilistic pushdown

2

automaton. The automaton maintains a stack of states s, where s is indexed by a word
bigram, and a finite memory containing a state m. It is governed by a finite control that
can read either HALT, STEP, or BRANCH. Initially the stack is empty, the finite memory
contains the bigram (1, 1), and the finite control reads STEP. The automaton proceeds
by carrying out three tasks. First, the finite control is read and a word is output with
the appropriate distribution. If the control reads either STEP or BRANCH, then word w is
output with probability T (w I m). If the control reads HALT then the automaton looks
at the stack. If the stack is empty the machine halts. Otherwise, the state s is popped off
the stack and word w is output with probability L (w I s). Second, the memory state is
changed from m = (wI, w 2) to M = (w 2, w). Third, the control is set to d with probability
D(dIm), and state m is pushed onto the stack if the new setting is BRANCH. The
probability with which this machine halts after outputting sentence S is precisely the
sum EA6C(s) P(S,A) where P(S,A) is given by equation (1).

In terms of link grammar, there is a natural equivalence between the values HALT.

STEP, and BRANCH and three simple disjuncts, specifying how a word connects to other
words. The value HALT corresponds to a disjunct having a single (unlabeled) left connec-
tor, and no right connectors, indicating that a connection can be made to any word on
the left, but to no word on the right. The value STEP corresponds to a disjunct having a
single left connector and a single right connector, and the value BRANCH corresponds to a

disjunct having a single left connector and two right connectors. With this grammar, the
probabilistic model described above is a simple variant of the general probabilistic model
presented in [LST92].

In terms of phrase structure grammar, ,'he constructive equivalence between link gram-

mar and context free grammars given in [ST91] can be extended probabilistically. This
shows how the above model is equivalent to the following standard probabilistic context-

free model:
AW- Bu,, D (BRANCH I v, w)

A CU D(ASTEPIv,w)
mVW, (HALT IV, -w)

B U•,, -.-. w,• y A u., L (y I v w)

C , WZ 3u,z r(- Ivw) .

Here x, y, z are vocabulary words with x, y #4-L and A, B, and C are families of nonter-
minals parameterized by triples of words u, v, w. The corresponding rule probabilities are
given in the second column. The start nonterminal of the grammar is S = At±. This
view of the model is unwieldy and unnatural, and does not benefit from the efficient link
grammar parsing and pruning algorithms.

3 Inferring the Grammar

The probabilistic model described in the previous section makes its predictions using both
long-range and short-range trigrams. In principle, we can allow a word to be linked to
any word to its left. This corresponds to a "grammar" that allows a long-range link
between any pair of words. The number of possible linkages for this grammar grows
rapidly with sentence length: while a 10-word sentence has only 835 possible linkages, a.

25-word sentence has 3,192,727,797 linkages (see Appendix A). Yet most of the long-range

3

links in these linkages are likely to be spurious. The resulting probabilistic model has far
too many parameters than can be reliably estimated.

Since an unrestricted grammar is impractical, we would like to restrict the grammar to
allow those long-range links that bring the most improvement to the probabilistic model.
Ideally, we would like to automatically discover pairs of words such as "(" and ")" with
long-range correlations that are good candidates to be connected by a long-range link.
We might find such pairs by looking for words with high mutual information. But if
we imagine that we have already included all nearest neighbor links in our model, as is
the case for the model (1), there is no point in linking up a pair of words L and R, no
matter how high their mutual information, if R is already well-predicted by its immediate
predecessor. Instead, we would like to find links between words that have the potential
of improving a model with only short-range links.

To find such pairs we adopt the following approach. Let V be the language vocabulary.
For each pair (L, R) E V x V, we construct - model PLR that contains all the bigram
links together with only one additional long-range link: that from L to R. We choose the
models PL, to be simple enough so that the parameters of all the 1V12 possible models
can be estimated in parallel. We then rank the models according to the likelihood each
assigns to the training corpus, and choose those pairs (L, R) corresponding to the highest
ranked models. This list of word pairs constitutes the "grammar" as described in the
previous section.

The model PLR that we construct for a particular pair (L, R) is a simplification of the
model of the previous section; it can be described as a probabilistic finite state automaton
(and thus it requires no stack). Before explaining the details of the model, consider the
standard bigram model B (w' I w) viewed as a probabilistic finite state machine. This
machine maintains a finite memory m that contains the previously generated word, and
can be in one of two states, as shown in Figure 1. The machine begins in state I with
m =.1. The machine operates by making a state transition, outputting a word tv, and
then setting the memory m to w. More precisely, the machine remains in state I with
probability D (STEP I m) = 1 - B (I I m). Given that a transition to state I is made, the
word w 3- is output with probability B'(w I m), where

B' (w I Mn) = B(wlm)a'-BwImm=

Alternatively, the machine outputs I and proceeds to state 2, where it halts, with prob-
ability D (HALT I m) = B (I Im).

The machine underlying our probabilistic model PL, is depicted in a similar fashion
in Figure 2. Like the bigram machine, our new automaton maintains a memory in of
the most recently output word and begins in 9tate I with in =.1. Unlike the bigrain
machine, it enters a special state whenever word L is generated: from state 1, the machine
outputs L, sets mn = L, and makes a transition to state :3 with probability B (L I m). A
transition from state 3 back to state 1 is made with probability DLR (STEPI L). In this
case, no word is output, and the memory m remains set to L. Alternatively, from state
3 the machine can output a word w 0 L, R and proceed to state 4 with probability
DLR (BRANCH L) BLR (wIm), where

= B (iv, I rn-)
1B (LI m) - B(RI i) - (J._Im)

4

w*L

w

1 2

w*L,R

Figure 1: A bigram machine Figure 2: An (L, R) machine

Once in state 4, the machine behaves much like the original bigram machine, except that
neither an L nor a R can be generated. Word w is output and the machine remains in
state 4 with probability DLR (STEPI m) BLR (WI M); it makes a transition back to state I
and outputs word R with probability DLR (HALTJI m).

According to this probabilistic finite state machine, words are generated by a bigram
model except for the word R, which is generated either from its immediate predecessor
or ;trom the closest L to its left. Maximum-likelihood training of this machine yields an
estimate of the reduction in entropy over the bigram model afforded by allowing long-range
links between L and R in the general model presented in Section 2.

Training of the models PLR for many (L, R) pairs in parallel is facilitated by two approx-
imating assumptions on the parameters. First, we assume that BLR (wi i) = B (tv I M).
Second, we assume that DLR (dl m) = DLR (d) for m ý6 L. Under this assumption, the
parameter DLR (HALT) encodes the distribution of the number of words between L and R;
in the hidden model the number of words between them is geometrically distributed with
mean DLR (HALT)- 1 .

Each model PLR can be viewed as a link grammar enhancement of the bigram model
in the following way. In the bigram model each non-boundary word tv has the single STEP

disjunct, allowing only links between adjacent words. In the model PLR we add additional
disjuncts to allow long-range links between L and R. Specifically, we give all words the
two disjuncts STEP and HALT. In addition, we give L a third disjunct BRANCILR, which
like STEP allows connections to any word on the left and right, and in addition requires a
long-range connection to R. Similarly, we give R a third disjunct STEPLR, which connects
to L on the left and any word on the right. This allows linkages such as

... a b L c d e f R g h ...

Now suppose that S = wi ... tN is a sentence containing a single (L, R) pair separated
by at least one word. The probability of S is a sum over two linkages, £hig., and LLR:

PLR (S) = PLA (4.bigl,) + PLR (£CLR). If we let k be the the number of words butween L

.5

and R, then under the two approximating assumptions made above it is easy to see that

PLR (LR) = c DLR (BRANCHLRI L) DLR(STTEPP)k-' DLV (HALT)

PLa(4bigr.,) = cDLR(STEPL)B(RIR-- I)

where c depends only on bigram probabilities. If, on the other hand, S contains a single L
and no R then there is a unique linkage for the sentence whose probability is DLI (STEPI L)
times the bigram probability of the sentence. More generally, given the model just de-
scribed, it is easy to write down the probability PLR (S) of any sentence with respect to
the parameters DL,. (dj w) and B (tW2 I Wt).

We train the parameters of this family of models in parallel, using the forward-
backward algorithm. In order to do this, we first make a single pass through the training
corpus, accumulating the following counts. For each (L, R) pair, we count N(k, 'I L, R),
the number of times that L and R are separated by exactly k > 1 words, none of which
is L or R, and the word immediately before R is w. We also count N(-"RIL), the number
of times L appears in a sentence and either is not followed by an R in the same sentence
or is followed by an L before an R. In terms of these counts, the increase in log-likelihood
for model PLR over the bigram model, in bits of information, is given by

GainIR =J: N(k, wIL, R) log Pt,.a (k, tv, RI L) + N(-'RIL) log DLFI (sTEPe L)

k,w B(Rlw)

where

PLR (k,w, RIL) =

DLR (BRANCHLII L) DLR (STEP)k-' DLR (HALT) + (1 - DLR (BRANCHLRI L) B (Rf I)

and
N(--RIL) = c(L) - ZN(k, wIL, R)

k,w

with c(L) the unigram count of L. Using this formula, forward-backward training can be
quickly carried out in parallel for all models, without further passes through the corpuis.
The results of this calculation are shown in Section 6.

4 The Mechanics of EM Estimation

In this section we describe the mechanics of estimating the parameters of our model. Our
concern is not the mathematics of the inside-outside algorithm for maximum-likelihood
estimation of link grammar models [LST92], but managing the large quantities of data
that arise in training our model on a substantial corpus. We restrict our attention here to
the short-range trigrarn probabilities T(z I x y) since these constitute the largest amount
of data, but our methods apply as well to the long-range trigrams L (s .r Y) and disjunct
probabilities D (d I x y).

To begin, observe that the trigram probabilities must in fact be EM-trained. In a pure
trigram model the quantity T(z I x y) is given by the ratio c(x y z)/l &ev c(.r y a) where
c(x y z) is the number of times the trigram (x y z) appears in the training corpus C.
But in our link grammar model the trigram probabilities represent the conditional word

6

probabilities in the case when the STEP linkage was used, and this is probabilistically
determined. The same ratio determines T(z I x y), but the c(x y z) are now expected
counts, where the expectation is with respect to trainable parameters.

The EM algorithm begins with some initial set T(z Ix y) of trigram probabilities.
For each sentence S of the corpus, the algorithm labels the trigrams (wi- 2 wi-. wi) of
S with these probabilities. From these and other parameters, the E-step determines
partial estimated counts O(wi- 2 wi-I wi). The partial counts for a particular trigram
(x y z), accumulated over all instances of the trigram in the corpus, give the trigram's
full estimated count c(x y z).

Our difficulties occur in implementing the EM algorithm on the desired scale. To
explain these difficulties, we will briefly sketch some naive approaches. We assume the
computer we will use has a substantial but not unlimited primary memory, which may be
read and written at random, and a much larger secondary memory, which must be read
and written sequentially. We will treat the corpus C as a series of words, wl, w.2, . . •, wII.,
recorded as indices into a fixed vocabulary V; this series is marked off into sentences. A
word index is represented in 2 bytes, and a real value in 4 bytes.

Suppose we try to assign trigram probabilities T(wi wI i- 2 wi- 1) to the sentence by
looking them up in a table, and likewise accumulating the partial counts O(wi- 2 w(i- wi)
into a table. Both must be randomly addressable and hence held in primary memory:
each table must have space for IVj3 entries. For realistic vocabularies of size IV1 ;-, 5 x 104.
the two tables together would occupy 1015 bytes, which far exceeds the capacity of current
memory technologies, primary or secondary.

In a corpus of ICI words, no more than ICI distinct trigrams may appear. This suggests
that we maintain the table by entering values only for the trigrams (x y z) that actually
appear in the corpus. A table entry will consist of (x y Z), and its T(z .r y) and d(.- y z).

For fast access, the table is sorted by trigram. Unfortunately, this approach is also
impractical. For a moderate training corpus of 25 million words, this table will occupy on
the order of 25 x 106 x (6 + 4 + 4) = 350 x 106 bytes, which exceeds the primary memory
of a typical computer.

Thus we are forced to abandon the idea of maintaining the needed data in primary
memory. Our solution is to store the probabilities and counts in secondary memory: the
difficulty is that secondary memory must be read and written sequentially.

We begin by dividing the corpus into R segments C1 , ... , CR, each containing about

ICIIR words. The number of segments R is chosen to be large enough so that a table of
ICI/R real values can comfortably reside in primary memory. For each segment CZ, which
is a sequence of words wl, ... , wc,, we write an entry file E, with structure

(wI w2 W3) 3, (Ov2 w.j tv4) 4, .. . , (WiC,-_ 2 wc1C, .I_ wIC,1) 0C'I.

We sort E, by trigram to yield SE1 , which has structure
"y Z 1) (X Y '2) (X Y Z2)-

X (X")JN(Yo JN(y :2)

Here we have written N(x y z) for the number of times a trigram appears in the segment,
and Jm(Y x), JN((xyv ").) for the sequence of positions where it appears. This sort is (lone
one time only, before the start of EM training.

A single EM iteration proceeds as follows. First we perform an E-step on each segment
C'. We assume the existence of a file AT, that contains sequentially arranged trigram prob-
abilities for Ci. (For the very first EM iteration, it is easy to construct this file by writing

7

out appropriate uniform probabilities.) Each segment's E-step sequentially writes a file
PCT, of partial estimated counts, O(wi W2 w3), O(w2 w3 w4), ... , 9 (WICs-1 2 WIC-I-1 WIcI).

Next we sum these partial counts to obtain the segment counts. To do this we read
PCT, into primary memory. Then we read SE, sequentially and accumulate the segment

count c,(x Y Z) = E=1) PCTi[jz J , and so on for each successive trigram of C0.
As each sum completes, we write it sequentially to a file SCTi of segment counts, of
format ci(x y z 1), ci(x y z2), ... The trigram that identifies each count can be obtained

by sequential inspection of SEi.
Now we merge across segments, by scanning all 2R files SE, and SCTi, and forming

the complete counts c(x y z) = l c,(x y z). As we compute these sums, we maintain

a list c(x y Zi), c(x y z2), ... in primary memory-there will be no more than IVI of

them-until we encounter a trigram (u v .) in the input stream where x : u or y :A v.

Then we compute c(x y) = E..zEv c(x y z), and dump the trigrams (x y z) and quotients

T'(z J x y) = c(x y z)/c(x y) sequentially to a file ST'. Note that ST' is a sorted list of
all the reestimated trigram probabilities.

To complete the process we must write a sequentially ordered file AT' of the rees-

timated trigram probabilities for C'. First we create a table in primary memory of

size ICil. Then we read SEi and ST' sequentially as follows. For each new trigram

(x y z) we encounter in SEi, we search forward in ST' to find T'(z I .r y). Then for each
J1 JN((y z) listed for (x y z) in SEi, we deposit T'(z I x y) in AT'[U(' . When

SE, is exhausted we have filled each position in AT'. We write it sequentially to disk and

are then ready for the next EM iteration.

5 Smoothing

The link grammar model given by (1) expresses the probability of a sentence in terms

of three sets of more fundamental pcobability distributions T, L and D, so that P(S) =

P(S; T, L, D). In the previous sections, we tacitly assumed 2-word history, non-parametric
forms. That is, we aHowed a separate free parameter for each 2-word history and prediction
value subject only to the constraints that probabilities sum to one. In the case of the

trigram distribution T, for example, there are separate parameters T(wfw'w") for each
triple of words (w, w', w") subject to the constraints E T(wtw'w") = I for all (w'. w").

We will refer to such 2-word history distributions as 3-gram estimators, since they are

indexed by triples, and will denote them by T 3 , L3 and D3. In the previous section we
outlined an efficient implementation of EM (inside-outside) training, for adjusting the
parameters of T3, L3 and D3 to maximize the log-likelihood of a large corpus of training

text.
Unfortunately, we cannot expect the link grammar model using maximum likelihood

distributions to work well when applied to new data. Rather, the distributions are likely to
be too sharply determined by the training corpus to generalize well. This is the standard
problem of overtraining and may be addressed by mixing the sharply defined distributions
with less sharp ones to obtain smoother distributions. This procedure is referred to as

smoothing.
The smoothing we employ in the link grammar is motivated by the smoothing typically

used for the trigram language model [BBdSM91]. The idea is to linearly combine the 3-
gram estimators T3 , L3 and D3 with corresponding 2-gram, 1-gram and uniform estimators

8

to obtain smooth distributions t.\, LA and 6.\. In the case of "i' we have

t.(ww'zv") = A3T3 (wlw'w") + A2T 2(wlW') + AIT,(w) + AOTO. (2)

Here T3 , T 2 and T, denote 3-gram, 2-gram and 1-gram estimators for T, and To denotes a
uniform distribution. The 2-gram estimator T 2 has a separate parameter T2(wjw') for each
2-gram (w w') subject to the constraint that Z. T2(wIw') = 1. The 1-gram estimator T1

has a separate parameter T1 (w) for each w. In general, an n-gram estimator depends on
n - 1 words of context. The parameters Ai satisfy the constraint Ei Ai = I to ensure that
"I,\ is a probability distribution. Equation (2) employs the same vector (Ao, At, A2, A3), for
each triple (w, w', w"). In practice, different vectors of A's are used for different triples.
We define L,\ and 6,\ similarly. We then define the smooth link grammar model P\ using
these smooth distributions: PA(S) = P(S;tA.,LA, DA).

To completely specify the smooth distributions, we must fix the values of the parame-
ters of the individual n-gram distributions as well as the mixing parameters A. Estimating
all of these simultaneously using maximum likelihood training would defeat the purpose
of smoothing: we would find that the only non-zero A's would be those multiplying the
3-gram estimators, which would ultimately train to their maximum likelihood (and thus
unsmooth) values! Instead we adopt the following procedure motivated by the deleted
interpolation method sometimes used for the trigram model [BBdSM91]. We first divide
our corpus of sentences into two parts: a large training corpus T, and a smaller smoothing
corpus S. We estimate the n-gram estimators using the training corpus only according
to the following scheme. The 3-gram estimators T 3 , L3 and D3 are chosen to maximize
the log-likelihood EsE log P(S; T3 , L3 , D3) of the training corpus using the EM technique
described in the previous section.

The 3-gram estimators are then used to "reveal" the hidden linkages of the training
corpus, and the 2-gram and 1-gram estimators are chosen to maximize the likelihood of the
training corpus together with these revealed linkages. Thus, for i = 1,2, the distributions
Ti, Li and Di maximize ESET EA P(AIS;T 3 , L.3 , D3) log P(S, AITi, L,, Di). This procedure,
while somewhat unwieldy to explain, is simple to implement, as it amounts to obtaining
the 2-gram and 1-gram estimators as appropriate conditionals of the EM counts for the
3-gram estimators.

With the n-gram estimators thus determined, we adjust the mixing parameters A to
maximize the probability of the smoothing corpus only. The logarithm of this probability
is

Oouter(A) = log P(Slt, L., f.\)= log- P(S, AI'.,\, L.\, b.\).
SES SES A

This maximization is complicated by the fact that the probability of a sentence now
involves not only a sum over hidden linkages, bu't for each linkage, a sum over hidden A
indices as well. We deal with this by employing nested EM iterations, as follows.

1. Begin with some initial A's.

2. By the inside-outside algorithm described in [LST92] and the previous section, reveal
the hidden linkages of the smoothing corpus using the smooth distributions 'f,\, L\
and f% and accumulate the EM counts cTr..(t), cT,.o(l) and cD.\(d) for the parameters
t,1, d of the distributions T, L and D. These are the counts obtained by maximizing

9

the auxiliary function

2 P(A IS; iA, LA, fO) log P(S, Aliv, LAI, bDA)
SES A

with respect to A'. Their accumulation is the E-step of the outermost EM iterations.

3. Form the objective function

Oinmr(A') = F C',,•(t) logtAI(t) + CL,A,(l) logiV,(1) + •_, cD,.A(d) log 6,\,(d).
t L d

Notice that the A' indices are hidden in Oi,,er(A'). Use the forward-backward algo-

rithm to find the A's that maximize Oi.er(A') subject to the appropriate constraints.
These nested EM iterations are the M-step of the outermost EM iterations.

4. Using these A's as new guesses for the As, return to step 1, and iterate until con-
verged.

Note that the outermost EM steps use the inside-outside algorithm for link grammars;
the hidden parses are in general context-free in generative power. However, step 3, which
is the M-step for the inside-outside algorithm, is itself an EM estimation problem. Here.
however, the hidden structure is regular, so the estimation can be carried out using
the forward-backward algorithm for probabilistic finite state machines. The general EM
algorithm technology guarantees that each iteration of the above algorithm increases the
log-likelihood 0 outer of the smoothing corpus with respect to the smooth model so far. In
practice, we have observed that roughly three iterations of the outer EM iterations and
15 iterations of the inner EM iterations suffice to smooth the parameters of our models.

6 Sample Results

This section presents the results of inferring and training our long-range trigram model
on a corpus of Wall Street Journal data.

Figure 3 lists examples of the word pairs that were discovered using the inference
scheme discussed in Section 3. Recall that these pairs are discovered by training a link
grammar that allows long-range links between a single, fixed, pair of words. A given pair
is judged by the reduction in entropy that its one-link model achieves over the bigram
model. In the table, this improvement, measured in bits of information, is shown in the
third column. The first section of the table lists the pairs that resulted in the greatest
reduction in entropy. The fourth column of the table gives the values of the probability
D (BRANCHLR I L) after forward-backward training. This number indicates the frequency
with which L generates R from long range, according to the trained model. The second
section of the table lists examples of pairs with high D (BRANCHLR I L). The fifth column of
the table gives the values of the probability DLR (HALT)-' after forward-backward training.
Recall that since the number of words between L and R is geometrically distributed with
mean DLI (HALT)-' in the hidden model, a large value in this column indicates that L and
R are on average widely separated in the training data. The third section of the table
gives examples of such pairs. Finally, the fourth section of the table shows the results of
the word-pair calculation applied to the corpus after it was tagged with parts-of-speech.

10

L R GainLR X 10' D(BRANCHLR IL) DLR (HALT)-'

() 472.944 0.808 2.277
"80.501 0.089 3.041

between and 57.097 0.674 2.002
[] 54.287 0.907 2.644
neither nor 22.883 0.588 2.030
either or 16.892 0.496 3.083
both and 14.915 0.277 1.786
- - 14.909 0.074 5.309

14.039 0.117 3.845
from to 13.021 0.044 1.931
tit tat 0.344 0.835 2.049
to.preheat oven 1.663 0.773 1.084
to-whet appetite 0.521 0.709 1.943
nook cranny 0.618 0.619 2.426
to.flex muscle 0.702 0.548 1.784
sigh relief 0.624 0.411 2.123
loaf bread 0.434 0.308 2.795
quarterback touchdown 0.167 0.027 5.715
inning hit 0.097 0.018 5.673
farmer crop 0.347 0.023 5.609
investor stock 0.270 0.014 5.149
firefighter blaze 0.513 0.071 4.955
whether or 5.123 0.124 4.925
she her 9.672 0.078 4.007
to.describe as 9.022 0.457 3.275
to-rise to 7.654 0.261 2.437
to.prevent from 7.491 0.407 3.743
to-turn into 6.642 0.174 3.566
to.attribute to 5.679 0.904 4.189
to-view as 5.193 0.524 3.425
to.bring to 4.960 0.237 3.836
to-range to 4.864 0.660 5.356

Figure 3: Sample word pairs

40

24-

2 35

#30

12 . . *
14

12.

20-

The search was restricted to verb-preposition pairs, and some of the pairs which yielded
the greatest reduction in entropy are shown here.

In Figures 4 and 5 we show plots of perplexity as a function of iteration in the EM
training of the long-range trigram model described in Section 2, using the word-pair
"grammar" that was automatically extracted. These graphs plot the perplexity as a
function of iteration, with the trigram perplexity shown as a horizontal line. In the first
plot, carried out over a training set of 2,521,112 words, the perplexity falls approximately
12.7% below the trigram perplexity after 9 iterations. After smoothing as described in
Section 5, the perplexity on test data was approximately 4.3% below the smoothed trigram
perplexity. In the second plot, carried out over a training set of 25,585,580 words, the
perplexity falls approximately 8% below the trigram perplexity after 6 iterations. After
smoothing this model, the perplexity on test data was approximately 5.3% under the
smoothed trigram perplexity. The fact that ihe magnitude of the entropy reduction on
training data is not preserved after smoothing and evaluating on test data is an indication
that the smoothing may be sensitive to the "bucketing" of the A's.

These perplexity results are consistent with the observation that for a fixed word-pair
grammar, as the training corpus grows in size the long-range trigram model becomes a
small perturbation of the standard trigram model. This is because the number of disjunct
parameters D (d I w, W2) and long-range trigram parameters L (w I w, W2) is on the order
of the number of bigrams, which becomes negligible compared to the number of trigram
parameters as the training set grows in size.

The smoothed models were incorporated into the Candide system for machine trans-
lation [BBP+94]. When compared with translations obtained with the system using the
standard trigram model, our long-range model showed a slight advantage overall. For ex-
ample, the French sentence "Manille a manqu6 d'61ectricit6 pendant dix heures rnercredi,"
which was translated as "Manila has run out of electricity for ten hours Wednesday" using
the standard language model, was translated as "Manila lacked electricity for ten hours
Wednesday" using the link grammar model.

While the long-range trigram model that we have described in this paper represents
only a small change in the trigram model itself, we believe that the techniques we develop
here demonstrate the viability of more complex link grammar models, and show that
significant improvements can be obtained using this approach.

12

References

[BBdSM91] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer. Tree-based smooth-
ing algorithm for a trigram language speech recognition model. IBM Tech-
nical Disclosure Bulletin, 34(7B):380-383, December 1991.

[BBP+94] A. Berger, P. Brown, S. Della Pietra, V. Della Pietra, J. Gillett, J. Laf-
ferty, R. Mercer, H. Printz, and L. Urea. The Candide system for machine
translation. In Human Language Technologies. Morgan Kaufman Publishers,
1994.

[BT73] T. Booth and R. Thompson. Applying probability measures to abstract
languages. IEEE Transactions on Computers, C-22:442-450, 1973.

[LST92] J. Lafferty, D. Sleator, and D. Temperley. Grammatical trigrams: A proba-
bilistic model of link grammar. In Proceedings of the AAAI Fall Symposium
on Probabilistic Approaches to Natural Language, Cambridge, MA, 1992.

[ST91] D. Sleator and D. Temperley. Parsing English with a link grammar. Tech-
nical Report CMU-CS-91-196, School of Computer Science, Carnegie Mellon
University, 1991.

13

Appendix A: Enumerating Linkages

In this appendix we derive a formula for the number of linkages of the model described
in Section 1 when the grammar allows long-range connections between any pair of words.

There is a natural correspondence between the linkages of model (1) and trees where
each node has either zero, one, or two children. A node having one child will be called
unary and a iiode having two children will be called binary. Let am,n be the number of
trees having m unary nodes and n binary nodes. Then a,,,,n satisfies the recurrence

am,n,= am.1,,, + Z ak,j am-k,-1-1.

O<k<m o<•<n-I

Thus, the generating function T(x,y) = Em,n>O am,n Xm yY satisfies the equation

T(x, y) = 1 + x T(x, y) + y T2 (x, y).

Since T(O, 0) = 1 we have that

1 - x -(-X) 2 - 4y
T(x,y) = 22y

The total number of nodes in a tree that has m unary nodes and n binary nodes is
2n + m + 1. Therefore, if S(z) = Zk>o skzk is the generating function given by S(z) =
z T(z, z2), then

"- Z am,n

2n+rn+m=k

and Sk is the number of trees having a total of k nodes. S is given by

l-Z- -(1 - z) 2 -4z 2
S(z) = 2

2z
I -Z - V 1 -3zT+_z

2z
(1/2) (-#1)/2

2z 2-ZOJo

k>O Ok +_I l

While we are unable to find a closed form expression for the coefficients

S k 1 / 2 + I - (: +
= i<kl+(1)2)

a few of the values are displayed below.

k 1 2 3 4 5 6 7 8 9 10 20 25
1 1 2 4 9 21 51 127 323 835 18,199,284 3,192,727,797

14

Appendix B: Deficiency

We say that a language model is deficient if it assigns a probability that is smaller than
one to the set of strings it is designed to model. There are several ways in which a
probabilistic link grammar can be deficient. One such way is if the total probability of
finite linkages is smaller than one. In this appendix we derive conditions under which this
type of deficiency can occur for a simplified version of our model. The general analysis is
similar, but more intricate [BT73].

Following the notation of Appendix A, suppose that we generate trees probabilistically
with a node having zero children with probability po, one child with probability P1, and
two children with probability P2, irrespective of the label of the node. These probabilities
correspond to the disjunct probabilities D (HALT I s), D (STEP I s), and D (BRANCH I s).

We ignore the short and long-range trigram probabilities in this simplified model. The
probability of generating a tree with m unary nodes and n binary nodes is then po+" p' pý.
The total probability assigned to finite trees is

Tflte= L am,,np0+ p'2 = poT(pi,,poP2).
m,n>O

Using the calculations of Appendix A, this leads directly to the relation

Tjte I - P, - P1 - Pl) 2 - 4po P2
2p2

p0 + P2 - IP0 - P21

2p2

In terms of the expected number of children E[n] = pi + 2p2, we can state this as

I E[n] < 1T•,, = po/pN E[n] >_ I

More generally, for n-ary trees with probability pi of generating i children, with 0 < i < n.
Trite is the smallest root of the equation

T = F, pi T'

and Tfinit. = 1 in case E[n] < 1. This is a well-known result in the theory of branching
processes.

15

